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Numerical temperature measurement in far from equilibrium model systems

Andras Baranyai
Department of Theoretical Chemistry, Budapest 112, P.O. Box 3®p&tniversity, H-1518 Budapest, Hungary
(Received 22 November 1999

We used a spherical piece of a solid crystal as a thermometer to measure the temperature of far from
equilibrium model fluids thermostatted by a numerical feedback mechanism. The thermometer, consisting of
135 or 321 small particles, was devised to behave like one of the fluid particles in order to maintain the
homogeneity of the dissipative dynamical system. We found the temperature determined by the random
velocities in the close-to-equilibrium thermometer to be substantially different from the kinetic temperature of
the studied nonequilibrium molecular dynamics models. We discuss the implications of our results.

PACS numbd(s): 05.60—k, 45.05+x, 51.10+y

The most convenient way to study far from equilibrium the behavior of real dissipative systems. If the thermometer
systems is to set up a numerical model that correctly deis a many-body object at equilibrium its random kinetic en-
scribes the microscopic dynamics and mimics the role of th&rgy, Tx , measured, of the contacting NEMD system. The
boundaries. In the case of steady state hydrodynamic sygractical task to be solved is to maintain the equilibrium
tems, there is a well-defined methodology for this purpos@haracte( _of _the thermometer despite the contact with its far
developed by Hoovef1] and Evans and Morrisg2]. The  from equilibrium environment. . .
purely classical nonequilibrium molecular dynamics Our choice of thermometer is a piece of a solid crystal
(NEMD) approach cleverly incorporates fictitious external €Mbedded in the fluid. Cohesive forces of the solid can be

forces in order to imitate the corresponding boundary effectsSirond enough to keep the particles together against the de-

In addition to this. a feedback mechanism is used to conStructive forces of the environment. The size and shape of
strain the Kinetic br total internal energy of the fluid to athe solid should, at least approximately, be identical with the

) . . size and shape of a fluid particle in order to prevent the
desired value. The latter techmque, termecsasihetic ther- thermometer from destroying the homogeneity of the NEMD
mostat ensures that there is no real energy flux towards th

i ; ) $hodel. The simplest choice for a particle of the fluid is a soft
boundaries, the numerical feedback instantaneously remov?épulsive sphere. Thus, the thermometer is chosen to be a

the dissipative heat. Thus, the system remains homogeneougnerical arrangement of 135 particles carved out from a
and well-defined. These properties make NEMD models ag|ose-packed, face-centered cubic crystal. Let the diameter of
dissipative nonlinear dynamical systems attractive to study.3 thermometer particle be. Then the outside shell at

Although NEMD models are well-defined in terms of — /75 contains 48 particles, which makes the thermometer
their microscopic dynamics, their thermodynamic characterfajrly spherical.

istics are still not fully understood. The familiar concepts of  \we devised a pairwise additive potential acting between
equilibrium thermodynamics such as entropy or temperaturgne particles of the thermometer as followsb.(r)
obtain different attributes under these conditions. At equilib-=¢[a,(o/r) 8+a,(o/r) *+as(o/r) %+a,]. The a; pa-
rium one can identify three different possibilities for tem- rameters(128/27, —240/27, 96/27,—11/27 are chosen to
perature definition: the kinetic, the thermodynamic, and theproduce a minimum at= o with ¢(r)=—¢, and a maxi-
operational temperatures. The kinetic temperature is definethum atr =20 (which is the cutoff distance for this interac-
as Ty=[1/(3N—c) k=N, (p?/m;), wherep; is the random tion) with ¢(r)=0.0. The fluid-fluid and fluid-solid poten-
momentum(superimposed on the average, local streamingials are identical: ¢y ¢(r), ¢ss(r) = dsr) + & with a cutoff
momentum, c is the number of constraints in the system,at r=o. The inter-particle distances are calculatedrgs
andm; is the mass of particle The system consists ®  =[(x;—x;)%+ (i —y;)?+(z:—2)?]**~r,. The values of
particles and is Boltzmann’s constant. The thermodynamicr for the solid-solid, fluid-solid, and fluid-fluid interaction
temperature is defined ds=(JU/dS)yy, whereU is the are 0.0,\70, and 270, respectively. The potential de-
internal energy is the volume, andis the entropy of the scribed above provides closely identical size for the fluid
system. The definition of the operational temperatligg, is,  particles and the “thermometer.” In addition to this, the
in fact, a measurement instruction: temperatures of twadentical functional form of the interaction helps in speeding
systems in thermal contact are equal if there is no net flow ofip the exchange of energy between the fluid and the solid.
energy through the common boundary of the systems. Whil&o produce significant nonlinear effects one has to use large
at equilibrium these three definitions represent different asdissipative fields and, inevitably, largés to keep the crystal
pects of the same state variable, it is not the case away fromogether. We have no striet priori ideas for the mass of a
equilibrium [3-5]. Then it is not surprising that the concept solid particle. Obviously, the whole crystal should not be
of temperature in nonequilibrium systems is a matter of delighter thanm;, wherem; is the mass of a fluid particle.
bate and controverd]. Since it is thes/mg ratio which determines the frequency of

In this study we want to quantify the operational tempera-vibrations of the solid, light solid particles mean slow energy
ture, To, of several NEMD models by a mechanical ther- exchange. In all that follows the results will be expressed in
mometer hoping that the results will help in understandingunits ofe, o, andm; .
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We choose the Sllo¢so-called because of its connection  TABLE I. Details of results for equilibrium and color conduc-
to the Doll's tensor algorithm of Hoovdn]) and the color tivity [e, average energy of a particle;,, pyy=p,, pressure tensor
conductivity algorithms as NEMD mode[2]. The former elements; T,, T,=T, kinetic temperature componentsjy
method(apart from the synthetic thermostés an exact re- =CiPxi/m; color current withc;=(—1)' andi=1,2,..N] Num-
alization of planar Couette flow. It is valid well beyond the bers in _parenthesis indicate the uncertainty in units_ of the last deci-
linear regime as far as the linear velocity profile is stable M@l digit. The symbols and** refer to the 321-particle thermom-
The color flow algorithm is formally identical with the model ©ter with 102 or 494 fluid particles, respectively.
of a 1-1 molten salt under the impact of a constant electric

field. In the case of planar Couette flow, the motion of the Color field 0.0 0.5 1.0
crystal can be decomposed into collective and individual ¢ 1.6334) 1.6382) 1.6412)
movements of the constituent particles. In addition to the , 0.04272) 0.04422) 0.04753)
center of mass translation, the crystal rotates as a whole , 0.04272) 0.04384) 0.04464)
without allowing particles to leave their sites. Superimposed Tiy 1.000 1.028) 1.14020)
on these two obvious collective effects, there can be a subtle 1.000 0.9894) 0.92410)
pulsation of the sphere. If the position vector of a particle Jy 0.0 0.0973) 0.29820)
measured from the center of the crystal forms an angle close -, ' } '
; . . To(ms=0.1) 1.063) 1.072) 0.953)
to #/4 or 3m/4 with the x axes the impact of the shear field To(m.=0.2) 0.994) 0.992) 0.914)
elongates this vector. In the perpendicular directions the _° S ' ' ’
e ; ; To(ms=1.0) 0.992) 1.01(2) 0.9473)
shear field induces a contraction. The Sllod equations of mo-
: , To(Ms=5.0) 0.992) 0.992) 0.9013)
tion are as followg2]:
To(ms=0.2)* 1.033) 1.033) 0.933)
To(mg=0.2)** 1.01(3) 1.023) 0.933)

P
qi=a'i+exwi,

(1)  particles. The equations of motion were integrated by a fifth
Pi=Fi—eypyi—ap;, order Gear predictor-corrector algorithm. Averages were col-
lected during 4000—16 000 time units from each state point
wheree, is a unit vectorg;, p;, F;, andm;, are the posi- of the steady state systems.
tion, momentum, Newtonian force, and mass of particle ~ We reduced particle positions by the thermometer’s cen-
respectively. The constant shear rate is defined yas ter of mass, particle velocities by its average velocity, and
=Jdu,/dy anda is the thermostatting multiplier given by the determined the angular momentum and the inertia tensor of
NoseHoover integral feedback formu[d]. Equation(1) de-  the thermometer. These two quantities provided the angular
scribes the motion of the fluid particles. In the case of thevelocity vector in the usual way. Subtracting the rotation and
particles of the thermometer, there is no thermostat, i.e., ththe center of mass motion from the velocities of each par-
last term of the momentum equati¢b is missing. A further  ticle, we identified the random part of their motion which
difference is that the streaming ternjithe second terms on provided the temperature of the thermometer. Temperature
the right-hand side of Eq(1)] act on the particles via the values determined for the y, andz directions were practi-
motion of the crystal's center of mass. Thug,is they cally identical. We distinguished the core of the thermometer
coordinate angb,; is they momentum of the center of mass. (approximately 60 particledrom its outer shell by monitor-
The latter is divided by 135, by the number of solid particles.ing their temperatures separately. In all cases, the tempera-
In the case of the color conductivity algorithm, the standardure of the core was higher by less than 0.5%. Thus, we can
equation of motions were us¢#], with a thermometer par- neglect the role of heat conduction inside of the crystal and
ticle having no color charge. Fluid particles were thermostatean accept our thermostat as a close-to-equilibrium, many-
ted also with the Noseloover schem¢l]. particle system. In the case of color conductivity, there is no
We collected data at the number density @f streaming of the center of mass and no well-defined average
=0.003815 and'x=1.0. The thermometer crystal was cre- rotation of the solid crystal. Still we used the same method to
ated in the middle of the simulation box by removing the measure the temperature because in the limit of infinitely
overlapping fluid particles. This way we ended up with 102large number of thermometer particles the reductions de-
fluid particles plus the thermometer particle. The value of scribed above do not distort the results.
was 6.0. This deepness was sufficient to simulate reduced We show equilibrium and color conductivity results in
shear rates up to 0.5 without a serious distortion of theTable | and shear flow results in Table Il. Directional tem-
sphere. The eigenvalues of the inertia tensor increased leggrature “components” of the fluid are also shown because
than 5% for the largest shear rate of 0.5, while the differencéor NEMD models these properties also characterize the sys-
between the largesbelonging to the eigenvector parallel to tem. First, we calibrated the solid thermometer by measuring
2) and the smallest eigenvalues was less then 2%. The lack tie temperature of the equilibrium fluid thermostatted by the
significant distortion meant that we could neglect the contri-NoseHoover scheme. The discrepancies from 1.0 are be-
bution of the pulsation of the solid sphere on the temperayond the error bars. However, in the absence of the thermo-
ture. (Our pilot calculations also showed that this contribu-stat, we experienced no significant differences from 1.0 us-
tion is below the error bars of our calculation¥Ve used ing any of the masses. We believe that periodic oscillations
four different mass values for the thermometer par-of the kinetic temperature governed by the fictive mass of the
ticles: 0.1, 0.2, 1.0, and 5.0. The time step varied betweesynthetic thermostat have some impact on the heat transfer
0.002 and 0.0005 depending on the mass of the thermometbetween the thermometer and the fluid by interfering with
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TABLE II. Details of results for shear flowp,, is thexy element of the stress tensdr,;=3.0-T,
—T,. For further explanation of symbols, see Table |

Shear rate 0.1 0.2 0.3 0.4 0.5

e 1.6504) 1.6724) 1.7004) 1.7076) 1.66510)
Pxx 0.048Q3) 0.05534) 0.06314) 0.063110) 0.044Q25)
Pyy 0.04793) 0.05434) 0.06124) 0.063@8) 0.053815)
Pz 0.04593) 0.04984) 0.05386) 0.05436) 0.045215)
— Pxy 0.00983) 0.01792) 0.02436) 0.02516) 0.01728)
Ty 1.02410 1.0358) 1.0514) 1.0308) 0.93510)
Ty 0.9966) 1.0084) 1.0314) 1.0976) 1.21910
To(mg=0.1) 1.093) 1.123) 1.31(5) 1.385) 1.566)
To(ms=0.2) 0.993) 1.063) 1.184) 1.284) 1.405)
To(ms=1.0) 1.063) 1.114) 1.21(4) 1.344) 1.425)
To(ms=5.0) 1.023) 1.083) 1.204) 1.274) 1.425)
To(mg=0.2)* 1.033) 1.264) 1.535)
To(mg=0.2)** 1.033) 1.284) 1.576)

the shear-, temperature-, and density-determined average frisvo quantities in terms of increasing external fields as long
quency of collisions and with the vibrations in the solid. as the system and thermostat set up is identical. This is in
Characteristic properties of simulated liquids at the sameccordance with the results of RE]. As can be seen in the
state point and external field did not differ significantly in tables, different particle masses in the thermometer lead to
terms of the different mass of the thermometer. Thereforegitferent T, values. Since the random kinetic energy of the
we present only their corresponding averages. In fact, thes@ermometer might be a function of the heat conductivity
properties could be determined more accurately than the rgsenyeen the fluid and the solidee our discussion latethe
lated temperature of the thermometer. existence of such a difference cannot be excluded. However,
_The major result of these calculations is thignificant \ye think that for this simple system it cannot be very signifi-
@fferencebetween the }(lnet|c temperature of the nonequilib-cant. 1t is more likely that, in addition to numerical uncer-
rium thermostatted fluid and the kinetic temperature of theginties, the interference of the synthetic thermostat might be
thermometer. There can be no doubt that in NEMD modelsesponsible for these temperature differences as we alluded
the operational temperature is not identical with the kineticiy gpove.
temperature . o We performed additional calculations with a thermometer
We have already mentioned therelated limitations of  containing 321 small particle&This arrangement has 72 par-
creating large, easy-to-measure nonequilibrium effects in OUicles on the surfack.We rescaled the sizéand the pair-
m(_)d_el. Unfortunately, there are other Iimitatior_ws as We”-potential inside the thermomejenf the small particles by a
Driving NEMD systems to extreme external field values,qior of \7/13 in order to keep the same circumstances in
might cause a change in their dynamics. This can be obge fiyig as before(The fluid-thermometer interaction re-
served for the color conductivity with the external field of ,5ined the sampThe calculations reported at the end of
1.0, and for the two higher shear rates, 0.4 and 0.5. For botgpes | and 11 usedh,=0.2. The fluid contained 102 or 494
NEMD models the motion of fluid particles becomes moregiq particles in equilibrium and under the impact of several
ordered than it was at lower fields. At high shear rates the,erng| field values. The results are in agreement with the
fluid gets ordered, particles with identigatoordinates form ot of the calculations. We also performed calculations with
channels(this is the cause of the name "string phaseihd  |5.46r and smallee's. In the former cases, we had slow
these channels travel as collective entities during the flow. '%nergy exchange, while in the latter cases, values below 3.0—
the case of (_:olor c_ondgctivity, the situation is simi_lar,_most4_o could not keep the crystal together for high shear rates.
of the color is carried in channels. The random kinetic en-q; sy dies at low densities and in a two-dimensional fluid
ergy accumulates along the field direction. Particles perform, gicated that these calculations are disadvantageous because
|nten3|veIV|brat|ons in the direction bL_Jt are less likely to of the small frequency of collisions and the hexagonal shape
leave their channels in the other two directions. It seems thgfs 1he thermometer, respectively. Nevertheless, these results

the thermometer measures this out of channel motichyas 4y ot indicate any change in the qualitative behavior re-
(We performed additional calculations which supported th'sported in the tables.

assumption. This _is the reason of the surprising operational” \ye will now make a few remarks concerning the impli-
temperature decline for the high color field. In the case ofations of the results. First, properties of thermal balance

shear flow, the increase df, with the field is monotonic.  pepyeen systems with different dissipation per mass may not
The string formation, indicated by Table I, has no impact ongy arantee the uniformity of the temperature in steady states

this trend. I : Lo
These changes in the dynamics prevent us from accuratef)f}r from equilibrium. LetQ be the average rate of dissipation

determining the relationship between thereaseof T, and ~ Of our fluid phase. The@= Qg+ Qr, whereQg denotes the
the dissipation of the system. Nevertheless, it is a reasonableat removed by the synthetic thermostat @xdis the en-
assumption to suggest a linear relationship between theswgy transfer to the thermometer. After reaching the steady
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state the energy transfer from the thermometer to the fluichisms can give substantially different values outside the lin-
cancelsQ;. The driving force of this reverse current is the €ar regime. While the thermodynamic temperature seems to
larger kinetic temperature of the thermometer. Our result®e Smaller[3,4], the operational temperature is larger than

the thermal conductivity of the boundaries. Then, it is rea-caN expect from a temperaturelike quanfi}. We believe

sonable to assume that, in general, the kinetic temperatuf8at the Opefagona' tem%erature afS rf1ne<’:13uregl by our éher-

will be a function of Navier-Stokes transport coefficients mometer provides a good grasp of these problems and to-
h teristic of th icul i f th A In th ether with other promising approact&s8] can help clarify

characteristic of the particular setup of the system. in he picture both for NEMD models and real systems.

case of several nonequilibrium systems being in thermal con-

tact, thermal conductivities of phases and phase boundaries The author is indebted to Professor Bill Hoover who
together with the relative dissipations of these phases wilpointed to the need of such a numerical experiment. The
determine the resulting map of kinetic temperatures. author gratefully acknowledges the support of OTKA Grant
Second, the three definitions of temperature in NEMDNo. T24042 and the support of the NSF-MTA Collaborative
models thermostatted with instantaneous feedback mech&esearch Program through Grant No. INT-9603005.
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