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Numerical temperature measurement in far from equilibrium model systems

András Baranyai
Department of Theoretical Chemistry, Budapest 112, P.O. Box 32, Eo¨tvös University, H-1518 Budapest, Hungary

~Received 22 November 1999!

We used a spherical piece of a solid crystal as a thermometer to measure the temperature of far from
equilibrium model fluids thermostatted by a numerical feedback mechanism. The thermometer, consisting of
135 or 321 small particles, was devised to behave like one of the fluid particles in order to maintain the
homogeneity of the dissipative dynamical system. We found the temperature determined by the random
velocities in the close-to-equilibrium thermometer to be substantially different from the kinetic temperature of
the studied nonequilibrium molecular dynamics models. We discuss the implications of our results.

PACS number~s!: 05.60.2k, 45.05.1x, 51.10.1y
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The most convenient way to study far from equilibriu
systems is to set up a numerical model that correctly
scribes the microscopic dynamics and mimics the role of
boundaries. In the case of steady state hydrodynamic
tems, there is a well-defined methodology for this purpo
developed by Hoover@1# and Evans and Morriss@2#. The
purely classical nonequilibrium molecular dynami
~NEMD! approach cleverly incorporates fictitious extern
forces in order to imitate the corresponding boundary effe
In addition to this, a feedback mechanism is used to c
strain the kinetic or total internal energy of the fluid to
desired value. The latter technique, termed assynthetic ther-
mostat, ensures that there is no real energy flux towards
boundaries, the numerical feedback instantaneously rem
the dissipative heat. Thus, the system remains homogen
and well-defined. These properties make NEMD models
dissipative nonlinear dynamical systems attractive to stu

Although NEMD models are well-defined in terms
their microscopic dynamics, their thermodynamic charac
istics are still not fully understood. The familiar concepts
equilibrium thermodynamics such as entropy or tempera
obtain different attributes under these conditions. At equi
rium one can identify three different possibilities for tem
perature definition: the kinetic, the thermodynamic, and
operational temperatures. The kinetic temperature is defi
as TK[@1/(3N2c)#k( i 51

N (pi
2/mi), wherepi is the random

momentum~superimposed on the average, local stream
momentum!, c is the number of constraints in the syste
and mi is the mass of particlei. The system consists ofN
particles andk is Boltzmann’s constant. The thermodynam
temperature is defined asTT[(]U/]S)N,V , whereU is the
internal energy,V is the volume, andS is the entropy of the
system. The definition of the operational temperature,TO , is,
in fact, a measurement instruction: temperatures of
systems in thermal contact are equal if there is no net flow
energy through the common boundary of the systems. W
at equilibrium these three definitions represent different
pects of the same state variable, it is not the case away f
equilibrium @3–5#. Then it is not surprising that the conce
of temperature in nonequilibrium systems is a matter of
bate and controversy@6#.

In this study we want to quantify the operational tempe
ture, TO , of several NEMD models by a mechanical the
mometer hoping that the results will help in understand
PRE 611063-651X/2000/61~4!/3306~4!/$15.00
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the behavior of real dissipative systems. If the thermome
is a many-body object at equilibrium its random kinetic e
ergy,TK , measuresTO of the contacting NEMD system. Th
practical task to be solved is to maintain the equilibriu
character of the thermometer despite the contact with its
from equilibrium environment.

Our choice of thermometer is a piece of a solid crys
embedded in the fluid. Cohesive forces of the solid can
strong enough to keep the particles together against the
structive forces of the environment. The size and shape
the solid should, at least approximately, be identical with
size and shape of a fluid particle in order to prevent
thermometer from destroying the homogeneity of the NEM
model. The simplest choice for a particle of the fluid is a s
repulsive sphere. Thus, the thermometer is chosen to b
spherical arrangement of 135 particles carved out from
close-packed, face-centered cubic crystal. Let the diamete
a thermometer particle bes. Then the outside shell atr
5A7s contains 48 particles, which makes the thermome
fairly spherical.

We devised a pairwise additive potential acting betwe
the particles of the thermometer as follows:fss(r )
5«@a1(s/r )261a2(s/r )241a3(s/r )221a4#. The ai pa-
rameters~128/27, 2240/27, 96/27,211/27! are chosen to
produce a minimum atr 5s with f(r )52«, and a maxi-
mum atr 52s ~which is the cutoff distance for this interac
tion! with f(r )50.0. The fluid-fluid and fluid-solid poten
tials are identical: f f f(r ),f f s(r )5fss(r )1« with a cutoff
at r 5s. The inter-particle distances are calculated asr i j
5@(xi2xj )

21(yi2yj )
21(zi2zj )

2#1/22r 0 . The values of
r 0 for the solid-solid, fluid-solid, and fluid-fluid interactio
are 0.0,A7s, and 2A7s, respectively. The potential de
scribed above provides closely identical size for the flu
particles and the ‘‘thermometer.’’ In addition to this, th
identical functional form of the interaction helps in speedi
up the exchange of energy between the fluid and the so
To produce significant nonlinear effects one has to use la
dissipative fields and, inevitably, large«’s to keep the crystal
together. We have no stricta priori ideas for the mass of a
solid particle. Obviously, the whole crystal should not
lighter thanmf , wheremf is the mass of a fluid particle
Since it is the«/ms ratio which determines the frequency o
vibrations of the solid, light solid particles mean slow ener
exchange. In all that follows the results will be expressed
units of «, s, andmf .
R3306 © 2000 The American Physical Society
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We choose the Sllod~so-called because of its connectio
to the Doll’s tensor algorithm of Hoover@1#! and the color
conductivity algorithms as NEMD models@2#. The former
method~apart from the synthetic thermostat! is an exact re-
alization of planar Couette flow. It is valid well beyond th
linear regime as far as the linear velocity profile is stab
The color flow algorithm is formally identical with the mode
of a 1-1 molten salt under the impact of a constant elec
field. In the case of planar Couette flow, the motion of t
crystal can be decomposed into collective and individ
movements of the constituent particles. In addition to
center of mass translation, the crystal rotates as a w
without allowing particles to leave their sites. Superimpos
on these two obvious collective effects, there can be a su
pulsation of the sphere. If the position vector of a parti
measured from the center of the crystal forms an angle c
to p/4 or 3p/4 with thex axes the impact of the shear fie
elongates this vector. In the perpendicular directions
shear field induces a contraction. The Sllod equations of
tion are as follows@2#:

q̇i5
pi

mi
1exgg i ,

~1!
ṗi5Fi2exgpyi2api ,

whereex is a unit vector,qi , pi , Fi , andmi , are the posi-
tion, momentum, Newtonian force, and mass of particlei,
respectively. The constant shear rate is defined asg
[]ux /]y anda is the thermostatting multiplier given by th
Nosé-Hoover integral feedback formula@1#. Equation~1! de-
scribes the motion of the fluid particles. In the case of
particles of the thermometer, there is no thermostat, i.e.,
last term of the momentum equation~1! is missing. A further
difference is that the streaming terms,@the second terms on
the right-hand side of Eq.~1!# act on the particles via the
motion of the crystal’s center of mass. Thus,yi is the y
coordinate andpyi is they momentum of the center of mas
The latter is divided by 135, by the number of solid particl
In the case of the color conductivity algorithm, the stand
equation of motions were used@2#, with a thermometer par
ticle having no color charge. Fluid particles were thermos
ted also with the Nose´-Hoover scheme@1#.

We collected data at the number density ofr
50.003 815 andTK51.0. The thermometer crystal was cr
ated in the middle of the simulation box by removing t
overlapping fluid particles. This way we ended up with 1
fluid particles plus the thermometer particle. The value o«
was 6.0. This deepness was sufficient to simulate redu
shear rates up to 0.5 without a serious distortion of
sphere. The eigenvalues of the inertia tensor increased
than 5% for the largest shear rate of 0.5, while the differe
between the largest~belonging to the eigenvector parallel
z! and the smallest eigenvalues was less then 2%. The lac
significant distortion meant that we could neglect the con
bution of the pulsation of the solid sphere on the tempe
ture. ~Our pilot calculations also showed that this contrib
tion is below the error bars of our calculations.! We used
four different mass values for the thermometer p
ticles: 0.1, 0.2, 1.0, and 5.0. The time step varied betw
0.002 and 0.0005 depending on the mass of the thermom
.
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particles. The equations of motion were integrated by a fi
order Gear predictor-corrector algorithm. Averages were c
lected during 4000–16 000 time units from each state po
of the steady state systems.

We reduced particle positions by the thermometer’s c
ter of mass, particle velocities by its average velocity, a
determined the angular momentum and the inertia tenso
the thermometer. These two quantities provided the ang
velocity vector in the usual way. Subtracting the rotation a
the center of mass motion from the velocities of each p
ticle, we identified the random part of their motion whic
provided the temperature of the thermometer. Tempera
values determined for thex, y, andz directions were practi-
cally identical. We distinguished the core of the thermome
~approximately 60 particles! from its outer shell by monitor-
ing their temperatures separately. In all cases, the temp
ture of the core was higher by less than 0.5%. Thus, we
neglect the role of heat conduction inside of the crystal a
can accept our thermostat as a close-to-equilibrium, ma
particle system. In the case of color conductivity, there is
streaming of the center of mass and no well-defined aver
rotation of the solid crystal. Still we used the same method
measure the temperature because in the limit of infinit
large number of thermometer particles the reductions
scribed above do not distort the results.

We show equilibrium and color conductivity results
Table I and shear flow results in Table II. Directional tem
perature ‘‘components’’ of the fluid are also shown becau
for NEMD models these properties also characterize the
tem. First, we calibrated the solid thermometer by measu
the temperature of the equilibrium fluid thermostatted by
Nosé-Hoover scheme. The discrepancies from 1.0 are
yond the error bars. However, in the absence of the ther
stat, we experienced no significant differences from 1.0
ing any of the masses. We believe that periodic oscillatio
of the kinetic temperature governed by the fictive mass of
synthetic thermostat have some impact on the heat tran
between the thermometer and the fluid by interfering w

TABLE I. Details of results for equilibrium and color conduc
tivity @e, average energy of a particle;pxx , pyy5pzz pressure tensor
elements; Tx , Ty5Tz kinetic temperature components;Jx

5Scipxi /mi color current withci5(21)i and i 51,2,...N# Num-
bers in parenthesis indicate the uncertainty in units of the last d
mal digit. The symbols* and** refer to the 321-particle thermom
eter with 102 or 494 fluid particles, respectively.

Color field 0.0 0.5 1.0

e 1.633~4! 1.638~2! 1.641~2!

pxx 0.0427~2! 0.0442~2! 0.0475~3!

pyy 0.0427~2! 0.0438~4! 0.0446~4!

Tx 1.000 1.023~3! 1.140~20!

Ty 1.000 0.989~4! 0.924~10!

Jx 0.0 0.097~3! 0.298~20!

TO(ms50.1) 1.06~3! 1.07~2! 0.95~3!

TO(ms50.2) 0.99~4! 0.99~2! 0.91~4!

TO(ms51.0) 0.99~2! 1.01~2! 0.94~3!

TO(ms55.0) 0.99~2! 0.99~2! 0.90~3!

TO(ms50.2)* 1.03~3! 1.03~3! 0.93~3!

TO(ms50.2)** 1.01~3! 1.02~3! 0.93~3!
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TABLE II. Details of results for shear flow (2pxy is the xy element of the stress tensor;Tz53.02Tx

2Ty . For further explanation of symbols, see Table I!.

Shear rate 0.1 0.2 0.3 0.4 0.5

e 1.650~4! 1.672~4! 1.700~4! 1.707~6! 1.665~10!

pxx 0.0480~3! 0.0553~4! 0.0631~4! 0.0631~10! 0.0440~25!

pyy 0.0479~3! 0.0543~4! 0.0612~4! 0.0630~8! 0.0538~15!

pzz 0.0459~3! 0.0498~4! 0.0538~6! 0.0540~6! 0.0452~15!

2pxy 0.0098~3! 0.0179~2! 0.0243~6! 0.0251~6! 0.0172~8!

Tx 1.024~10! 1.035~8! 1.051~4! 1.030~8! 0.935~10!

Ty 0.996~6! 1.008~4! 1.031~4! 1.097~6! 1.219~10!

TO(ms50.1) 1.09~3! 1.12~3! 1.31~5! 1.38~5! 1.56~6!

TO(ms50.2) 0.99~3! 1.06~3! 1.18~4! 1.28~4! 1.40~5!

TO(ms51.0) 1.06~3! 1.11~4! 1.21~4! 1.34~4! 1.42~5!

TO(ms55.0) 1.02~3! 1.08~3! 1.20~4! 1.27~4! 1.42~5!

TO(ms50.2)* 1.03~3! 1.26~4! 1.53~5!

TO(ms50.2)** 1.03~3! 1.28~4! 1.57~6!
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the shear-, temperature-, and density-determined average
quency of collisions and with the vibrations in the soli
Characteristic properties of simulated liquids at the sa
state point and external field did not differ significantly
terms of the different mass of the thermometer. Therefo
we present only their corresponding averages. In fact, th
properties could be determined more accurately than the
lated temperature of the thermometer.

The major result of these calculations is thesignificant
differencebetween the kinetic temperature of the nonequil
rium thermostatted fluid and the kinetic temperature of
thermometer. There can be no doubt that in NEMD mod
the operational temperature is not identical with the kine
temperature.

We have already mentioned the«-related limitations of
creating large, easy-to-measure nonequilibrium effects in
model. Unfortunately, there are other limitations as we
Driving NEMD systems to extreme external field valu
might cause a change in their dynamics. This can be
served for the color conductivity with the external field
1.0, and for the two higher shear rates, 0.4 and 0.5. For b
NEMD models the motion of fluid particles becomes mo
ordered than it was at lower fields. At high shear rates
fluid gets ordered, particles with identicaly coordinates form
channels~this is the cause of the name ‘‘string phase’’! and
these channels travel as collective entities during the flow
the case of color conductivity, the situation is similar, mo
of the color is carried in channels. The random kinetic e
ergy accumulates along the field direction. Particles perfo
intensive vibrations in thex direction but are less likely to
leave their channels in the other two directions. It seems
the thermometer measures this out of channel motion asT0 .
~We performed additional calculations which supported t
assumption.! This is the reason of the surprising operation
temperature decline for the high color field. In the case
shear flow, the increase ofT0 with the field is monotonic.
The string formation, indicated by Table I, has no impact
this trend.

These changes in the dynamics prevent us from accura
determining the relationship between theincreaseof T0 and
the dissipation of the system. Nevertheless, it is a reason
assumption to suggest a linear relationship between th
fre-
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two quantities in terms of increasing external fields as lo
as the system and thermostat set up is identical. This i
accordance with the results of Ref.@5#. As can be seen in the
tables, different particle masses in the thermometer lea
different T0 values. Since the random kinetic energy of t
thermometer might be a function of the heat conductiv
between the fluid and the solid~see our discussion later!, the
existence of such a difference cannot be excluded. Howe
we think that for this simple system it cannot be very sign
cant. It is more likely that, in addition to numerical unce
tainties, the interference of the synthetic thermostat migh
responsible for these temperature differences as we allu
to above.

We performed additional calculations with a thermome
containing 321 small particles.~This arrangement has 72 pa
ticles on the surface.! We rescaled the size~and the pair-
potential inside the thermometer! of the small particles by a
factor of A7/13 in order to keep the same circumstances
the fluid as before.~The fluid-thermometer interaction re
mained the same.! The calculations reported at the end
Tables I and II usedms50.2. The fluid contained 102 or 49
fluid particles in equilibrium and under the impact of seve
external field values. The results are in agreement with
rest of the calculations. We also performed calculations w
larger and smaller«’s. In the former cases, we had slo
energy exchange, while in the latter cases, values below 3
4.0 could not keep the crystal together for high shear ra
Our studies at low densities and in a two-dimensional fl
indicated that these calculations are disadvantageous bec
of the small frequency of collisions and the hexagonal sh
of the thermometer, respectively. Nevertheless, these re
did not indicate any change in the qualitative behavior
ported in the tables.

We will now make a few remarks concerning the imp
cations of the results. First, properties of thermal bala
between systems with different dissipation per mass may
guarantee the uniformity of the temperature in steady st
far from equilibrium. LetQ̇ be the average rate of dissipatio
of our fluid phase. ThenQ̇5Q̇R1Q̇T , whereQ̇R denotes the
heat removed by the synthetic thermostat andQ̇T is the en-
ergy transfer to the thermometer. After reaching the ste
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state the energy transfer from the thermometer to the fl
cancelsQ̇T . The driving force of this reverse current is th
larger kinetic temperature of the thermometer. Our res
indicates that the temperature difference is a function of
dissipative process. However, this difference depends als
the thermal conductivity of the boundaries. Then, it is re
sonable to assume that, in general, the kinetic tempera
will be a function of Navier-Stokes transport coefficien
characteristic of the particular setup of the system. In
case of several nonequilibrium systems being in thermal c
tact, thermal conductivities of phases and phase bounda
together with the relative dissipations of these phases
determine the resulting map of kinetic temperatures.

Second, the three definitions of temperature in NEM
models thermostatted with instantaneous feedback me
-

id
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ill
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nisms can give substantially different values outside the
ear regime. While the thermodynamic temperature seem
be smaller@3,4#, the operational temperature is larger th
the kinetic one. It seems very likely that the kinetic tempe
ture of NEMD models is a wrong candidate for the role o
can expect from a temperaturelike quantity@7#. We believe
that the operational temperature as measured by our t
mometer provides a good grasp of these problems and
gether with other promising approaches@7,8# can help clarify
the picture both for NEMD models and real systems.
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